High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach.
نویسندگان
چکیده
Sulfur is an exciting cathode material with high specific capacity of 1,673 mAh/g, more than five times the theoretical limits of its transition metal oxides counterpart. However, successful applications of sulfur cathode have been impeded by rapid capacity fading caused by multiple mechanisms, including large volume expansion during lithiation, dissolution of intermediate polysulfides, and low ionic/electronic conductivity. Tackling the sulfur cathode problems requires a multifaceted approach, which can simultaneously address the challenges mentioned above. Herein, we present a scalable, room temperature, one-step, bottom-up approach to fabricate monodisperse polymer (polyvinylpyrrolidone)-encapsulated hollow sulfur nanospheres for sulfur cathode, allowing unprecedented control over electrode design from nanoscale to macroscale. We demonstrate high specific discharge capacities at different current rates (1,179, 1,018, and 990 mAh/g at C/10, C/5, and C/2, respectively) and excellent capacity retention of 77.6% (at C/5) and 73.4% (at C/2) after 300 and 500 cycles, respectively. Over a long-term cycling of 1,000 cycles at C/2, a capacity decay as low as 0.046% per cycle and an average coulombic efficiency of 98.5% was achieved. In addition, a simple modification on the sulfur nanosphere surface with a layer of conducting polymer, poly(3,4-ethylenedioxythiophene), allows the sulfur cathode to achieve excellent high-rate capability, showing a high reversible capacity of 849 and 610 mAh/g at 2C and 4C, respectively.
منابع مشابه
Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance.
Lithium sulfur batteries have brought significant advancement to the current state-of-art battery technologies because of their high theoretical specific energy, but their wide-scale implementation has been impeded by a series of challenges, especially the dissolution of intermediate polysulfides species into the electrolyte. Conductive polymers in combination with nanostructured sulfur have at...
متن کاملBottom-up, hard template and scalable approaches toward designing nanostructured Li2S for high performance lithium sulfur batteries.
Li2S with a high theoretical capacity of 1166 mA h g(-1) and the capability to pair with lithium free anodes has drawn much attention for lithium sulfur (Li-S) battery applications. However, the fast battery decay and the low capacity retention due to dissolution of intermediate polysulfides in electrolytes limit its development. Designing a nanosized and nanostructured host for Li2S through fa...
متن کاملSulfur/graphitic hollow carbon sphere nano-composite as a cathode material for high-power lithium-sulfur battery
The intrinsic low conductivity of sulfur which leads to a low performance at a high current rate is one of the most limiting factors for the commercialization of lithium-sulfur battery. Here, we present an easy and convenient method to synthesize a mono-dispersed hollow carbon sphere with a thin graphitic wall which can be utilized as a support with a good electrical conductivity for the prepar...
متن کاملInterfacial Reaction Dependent Performance of Hollow Carbon Nanosphere – Sulfur Composite as a Cathode for Li-S Battery
Citation: Zheng J, Yan P, Gu M, Wagner MJ, Hays KA, Chen J, Li X, Wang C, Zhang J-G, Liu J and Xiao J (2015) Interfacial reaction dependent performance of hollow carbon nanosphere – sulfur composite as a cathode for Li-S battery. Front. Energy Res. 3:25. doi: 10.3389/fenrg.2015.00025 Interfacial reaction dependent performance of hollow carbon nanosphere – sulfur composite as a cathode for Li-S ...
متن کاملA long-life lithium ion sulfur battery exploiting high performance electrodes.
A novel lithium ion sulfur battery is formed by coupling an activated ordered mesoporous carbon-sulfur (AOMC-S) cathode and a nanostructured tin-carbon anode. The lithium ion cell has improved reversibility, high energy content and excellent cycle life.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 18 شماره
صفحات -
تاریخ انتشار 2013